September 2004.

AXOPIS

Sound Wakes Vusic

http://www.axoris.be
mailto:info@axoris.be

ALKSmM
AL 3101 DSP Smulator

Command-line help

S A

INTRODUGCTION ...ttt et e e R e e e e e b e s e me e e e e e e e se et e e e e eresee e s reseenenne e erennenis 3
BASIC FEATURES ..ot bbb bbb 3
LIMITATIONS ...ttt et a et R e Rt e s e R e e e Rt R s e e R e e e e e R e st e R e e e b e en et e e e e b e ne et e e e nenr e ene 4
ABOUT THE SIMULATOR “PHILOSOPH Y™ ..ottt 4

52

54.

SHOWWALCH ...
5.8. USER PARAMETER COMMANDS.....

5.9. “+INPUT FILE” COMMAND16
5.10. “+QUTPUT FILE” COMMAND.....16
5.11. “+SIGNAL FILE” COMMAND v
5.12. “+TRACEFILE” COMMAND....... v
5.13. “+INPUT GEN” COMMAND........
5.14. “HSIGNAL GEN" COMMANDveiiutieiuteeateeeaseeaaiseeaaseeeasseeasesaasseeasseaasssassseesssessasessasssessssssasessasseesnsessssesssssessasessssenes 17
5.15. “HTOOL A MPSWEEP” COMMAND.cueeiteeiteeiteeteesesisesssesssessseaseesssessesssesasessesssessessssessessssesseessesssesssesssesssssessesssenns 18
5.16. “+TOOL FREQRESP” COMMANDeeitiiitieiteesteeteetestessesseesssesseesseessesssessesssesssessessssessessssesseessesnsessessessssssssssesssenns 19

KNOWN PROBLEMS, BUGSAND LIMITATIONS ... oottt ettt et ae et ste e sreenaeebeenneennesanesnnas 20
6.1. MULTI-THREADING RELATED ISSUES. ...euveiueeiteesteesteeiseessessessesssesssssssessesssesssesssesssssssesssessssssssssssssesssssssesssesssesssessessens 20
6.2. IO RELATED ISSUES...veeiuteeiteeeiuteeeseeaitesessseesssessssssasssesssesssssssssssessssssssssssssssssssssssssssssessssssnssssnsesssssssssssssnsesessessssessnses 20

1. Introduction

This documents describes the command-line version of the 1K DSP simulator and provides help for its
commands.

This command-line version of the simulator contains all the functionality required to make code debugging and
simulation. It basically allows usersto test their code before they have access to a development board.

The simulator has been designed in such away that it compares bit-true with execution on the chip. There are
however some limitations on the hardware supported; these limitations are described later in this document.
More information on the 1K DSP chip can be found on http://www.wavefrontsemi.com (formerly Alesis
Semiconductors).

2. Basic features

The command-line simulator (will) contain the following features (features in italic are not implemented yet):

Input can be either assembly files or object files; assembler and disassembler are included.

- Stepping by any step in the code.

- Easy watching of variables, memory locations, ...

- Breakpoints on Program Counter and on condition on avalue (register or memory).

- Display of currently executed instruction.

- Filesupport for .wav and .pcm sound files for floating-point ASCI| files and for decimal/hexadecimal
ASCII files:
- Readfrom afileto any input or output |ocation, any register or any memory location.
- Writeto afilefrom any input or output location, any register or any memory location (Tracing).

- Generator tools for generating sine, square, triangle or sawtooth waves at the ‘inputs of the chip’.

- Static amplitude curve measurement tool (via sine wave with sweeping amplitude).

- Frequency analysis tool for inputs and outputs.

- Transfer function measurement tool (giving amplitude and phase characteristic).

- Scripting in order to execute alist of commands and ease the compl ete simulation of an application (load
input files, specify output files, run, ...).

- Script names can be given as argument to the simulator so that simulation can be done viabatches. This
helps when making extensive tests or when validating modules.

- Aliasesfor command names.

These features are (will be) supported by various commands that are described later in the document.

When simulating reasonably sized code, the simulator is also capable of making streaming from/to a sound
board; the reasonably is of course highly dependent on the power of the computer used. The streaming from/to
the sound board isrelying on the PortAudio library which is an open-source multi-platform library; more
information can be found on http://www.portaudio.com

Last but not least, the simulator has been designed and written to be multi-platform; it can work on Windows
operating systems and on Linux operating system aswell. Thisis achieved with the help of the wxWidgets
library (formerly wxWindows); more information can be found on http://www.wxwidgets.org.

Multi-threading has been used in this simulator. It allows, for example, entering commands while some long
simulation is running which is of interest if one wantsto stop asimulation or to set some parameters to other
values while audio streaming is ongoing. See 6.Known problems, for more details.

3. Limitations

The simulator has been designed and written to give bit-true results compared to the execution on the chip
(except for the LOG and EXP functions). The simulator does however NOT simulate all the hardware present on
the chip. The following features are missing :

- External control i.e. read from status register, write to control registers,...

- Memory offset counter.

- Pinaccesses viaread/write to memory locations made for that (addresses in the range $421 to $42F).

- Peak meters.

Some features are present in order to increase the ease of use:

- Initial valuein control register such that simulation can begin.

- To ease stepping through the code, only the cycles needed (the one containing real code) in the 1024 range
are executed.

These features can of course be customized or disabled and are stored viaa“configuration” mechanismi.e.

registry on Windows platform and configuration files on Linux.

Even though the simulator has been written to work as fast as possible, there will be no support for real-time
operation i.e. using sound cards to listen real-time to the simulation running.

4. About the simulator “philosophy”

This paragraph describes a bit the simulator “ philosophy” before going in detail on all the available commands.
Thisissupposed to give akind of overview on what to do to use, in practice, the simulator.

First of all, the very first obvious action isto load a program (assembly code or object fil€) in the simulator; this
is done with the “load” command. The second action can be to load some memory content in the data memory;
thisisalso handled viathe “load” command.

The second step will certainly be to associate input(s) and/or output(s) to some memory |locations where memory
location stands for any register or any memory location of the chip. Two different ways of providing |Osto the
simulator exists where the difference stands in when the data is read/written.

- Thefirst and most obvious way of reading/writing dataisto use the “+input” and “+output” commands.
These commands read/write data every 1024 cyclesi.e. asit happens on the chip with the IN and OUT
memory locations.

- Thesecond way of reading/writing dataisto usethe“+signal” and “+trace” commands. These commands
read/write data every cycle.

Thefirst oneisespecially suited to simulate the hardware 10s or to track what is happening in afilter state while

the second oneis especially suited to track what is happening all over thetimein aregister or temporary memory

location.

Actually, another way of providing |Osto the simulator exists; atool can be used to compute atransfer function,

... by applying some data and computing the results. Thisis done with the “+tool” function and the read/write

happen each 1024 cycles.

Then finally, the code can be executed using the “go” command. When simulation is over, asimple “ exit”
command will exit the simulator.

When it comes to the debugging issue, some commands have been added to the simulator to ease thelife of the
programmer. Stepping through the code is allowed viathe “step” command while different kind of breakpoints
on instructions can be used with the “+break”, “-break” and “+tempbreak” command. Breakpoints on val ues can
also be used viathe “ +valbreak” and “-valbreak” commands.

Some display routines are also provided to help debugging like printing of the executed line with the “ dasm”
command and the likes but also like displaying the content of any memory location with the “show” command.

Some user parameters can finally be set by using the “ setuser” command. These parameter and the aliases
(+alias, -alias, showalias, -allalias) will help the user to customize his working environment.

5. Commands

Hereisfinally about thereal stuff: how can | use this simulator?

The commands are not given in an alphabetical order but morein a“logical” order of useinreal life. Only
implemented commands are described.

Parameters between brackets are optional parameters.

5.1. Basic commands
quit / exit
Syntax :quit/ exit
Feature : Asone may guess, thiscommand simply exits from the simulator.
Params : None.
Issues : If asimulation isrunning, the simulation will be stopped and the files will be saved (except for the tool
reports).
load
Syntax : load filename [complete]
Feature : Loadsa*“program” file into the simulator (and the associated memory map file).
Params : filenameisthe file to open; it can be an assembly (.asm), object (.obj) or script file (.cmd).

: complete is specifying what should be done with the memory left (when program size less than 1024):
- when equal to “UNCHANGED”, the memory left is unchanged.
- when not specified, the memory left will be reset.

Issues : Thefiles must have one of the following extensions: .asm, .obj, .cmd in order to be recognized.
The simulator looks for amemory map file with the same name but with a .map extension.
Refer to AgALag / mkALproj documentations for more details on the memory map file.
If thefileisnot found, the simulator says so by awarning.
help
Syntax : help [command]
Feature : Prints help on available commands.
Params : command specifies for which command help is required. If omitted, the list of commandsis shown.
Issues : None.
loadscript
Syntax : loadscript filename
Feature : Loads and execute a script file with no restrictions on the file extensions asin the “load” command.
Params : filenameisthe script file to open.
Issues : Sincethe“go” command is not blocking, the “exit” command should not be used in scripts.
5.2. Miscellaneous commands
version
Syntax :version
Feature : Prints version number of the program.
Params : None.
Issues : None.
copyright:
Syntax : copyright
Feature : Prints copyright notice for the simulator.
Params : None.
Issues : None.

5.3. Program flow commands

start (or “go”)
Syntax : start [blocking] [address]
Feature : Startsasimulation (continues after stop or steps occurred).
Params : blockingis specifying if the simulation should block the command-line or not.

- when equal to “blocking”, the command-lineis blocking while simulating.

- when not specified, the control is given back to the user.

: addressis specifying the Program Counter value where simulation should start.
Issues : Setting of PC address when starting is not recommended as it canlead to non-read or non-written data.
A reset might be performed at completion of a simulation (see 5.8.User parameter commands).

step

Syntax : step [blocking] [n]
Feature : Stepsthrough instructionsin the program.
Params : blockingis specifying if the simulation should block the command-line or not.
- when equal to “blocking”, the command-lineis blocking while simulating.
- when not specified, the control is given back to the user.
: nisthe number of stepsto be executed; if omitted, a step of asingleinstruction is made.
Issues : The +dasm and —dasm commands allows printing or not of disassembled line when stepping.

stop

Syntax : stop

Feature : Stops arunning simulation (launched with start or with step and a pretty big number of steps).
Params : None.

Issues : None.

reset
Syntax : reset [type]
Feature : Resetsthe simulation by cleaning data memory, closing files and/or resetting Program Counter.
Params : type specifies on what the reset should be applied.
- when equal to “10”, all the |Os will be reset.
- when equal to “1O_reopen”, the IOs will be reset and reinitialized again.
- when equal to “Prog”, the program memory and breakpoints will be reset.
- when equal to “Prog_only”, only the program memory will be reset.
- when equal to “Data’, the data memory and watches will be reset.
- when equal to “Data_only”, only the data memory will be reset.
- when equal to “DSP”, reset as it would happen in hardware i.e. program and data memory.
- when equal to “All”, everything is reset (program, data memories and | Os).
- when equal to “All_reopen”, everything isreset and 10s arereinitialized again.
- when not specified, a“reset all* will be done.
Issues : With all types of reset, the internal DSP state (A, B, U, program counter) will be reset.
The |Os are reinitialized with the same command-line as the one used for the initialization.
Aliases are never reset. The“-alalias’” command should be used to perform thistask.
Therounding flag is never affected by the reset.

5.4. IO related commands

These commands are not limited to inputs and outputs as strictly defined in the DSP specification. Registers and
any memory locations can be used as input or output locations.

+input
Syntax : +input [type] [type-specific parameters]
Feature : Setsan input of the simulator to be loaded before the 1 cycle (of the 1024) is executed.
Params : type describes which kind of “input device” will be attached to an input location; it can be
- file: the “input device” to connect is afile (see 5.9 +input file” command for details).
Issues : Attaching multiplefilesto asingleinput is not forbidden, user should take care it doesn’t happen.

+output

Syntax
Feature
Params

I ssues

: +output [type] [type-specific parameters]
: Sets an output of the simulator to be saved after the 1024™ cycle is executed.
: type describes which kind of “output device” will be attached to an output location; it can be

- file: the “output device” to connect isafile (see 5.10. +output file’ command for details).

. Attaching multiple filesto asingle output is not forbidden, user can exploit that feature if needed.

+signal

Syntax
Feature

Params

I ssues

+trace

Syntax
Feature

Params

I ssues

+tool

Syntax
Feature
Params

:+signal [type] [type-specific parameters]
: Setsasignal for the simulator (akind of input) to be loaded after each instruction is executed.
: type describes which kind of “signal device” will be attached to an input location; it can be

- file: the“signal device” to connect isafile (see5.11" +signal file” command for details).

: Attaching multiple signalsto asingle location is not forbidden, user should take care it doesn’t happen.

: +trace [type] [type-specific parameters]
: Sets atrace of the simulator (akind of output) to be saved after each instruction is executed.
: type describes which kind of “output device” will be attached to an output; it can be

- file: the “output device” to connect isafile (see 5.12." +trace file” command for details).

. Attaching multiple tracesto a single location is not forbidden, user can exploit that feature if needed.

: +tool [type] [type-specific parameters]
: Specify usage of tool with the simulator. A tool can read and/or write to locations from $410 to $417.
: type describes which tool will be used; it can be

- AmpSweep: the static amplitude curve measurement tool will be used.
More information can be found in5.15.

“+tool AmpSweep” command.
- FregResp: the freguency response curve measurement tool will be used.
More information can be found in5.16. “ +tool FregResp” command.
Issues :Interaction (for memory read/write) between +tool and +input and/or +output is not checked.

-input
Syntax : -input Inputlndex
Feature : Removesthe input given by itsindex.
Params : Inputlndexisthe index of theinput to remove; index is found from the “ showinput” command.
Issues : Usethe “showinput” command to find the index of the input to remove.
: The same stands for the “-output”, “-signal”, “-trace” and “-tool” commands.

-allinput

Syntax :-allinput

Feature : Removesall theinputs.

Params : None.

Issues : The same standsfor the “-alloutput”, “-allsignal”, “-alltrace” and “-alltool” commands.

showinput

Syntax : showinput

Feature : Displaysall the inputs created with their initial command string.

Params : None.

Issues : Thiscommand associates index with inputs; thisindex has to be used with the “-input” command.
: The same stands for the “-alloutput”, “-allsignal”, “-alltrace” and “-alltool” commands.

loopinput
Syntax : loopinput InputNumber [Mode]
Feature : Allowslooping on input files. The command has no effect on generators.
Params : InputNumber is the number of the input which mode should be modified.
: Mode specifies whether to loop (“on™) or not to loop (“off").
Issues : Usethe “showinput” command to find the index of the input to modify.
: Anything else than “off” will be considered as*“on” thusenablin g the looping.

5.5. Streaming related commands

First of all, by streaming is meant streaming from/to a sound card. The implementation of streaming in this
simulator is made based on the PortAudio library.

Thislibrary allows streaming on all kind platforms using the same API but different sourcefiles. Asa
consequence:
- Under Windows, there will be one executable for the standard Multimedia extension (MME) drivers
and one executable using ASIO driversif available.
- Under Linux, there will be one executable for the OSS drivers and one executable for the ALSA
drivers.

+startstream

The startstream command starts recording the input, simulating the code on this input and then playing the
output.

The startstream command can be used in two ways:
- Specifying the inputs and outputs to be used
- Without specifying any input or output.

Syntax : startstream SamplingFrequency NumberOf Channels Inputl ... Input8 Outputl ... Output8
Feature : Start streaming.
Params : SamplingFrequency specifies the sampling frequency to use.
If set to “0”, the sampling frequency known by the simulator (if available) will be reused.
Number OfChannels specifies the number of channels (in therange[1...8]) to use for streaming.
InputLocationl...8 specifies the input location.
OutputLocationl...8 specifies the output location.
Issues : The same number of channelsis used for both recording and playback.
The same syntax as the syntax of the “show” command can be used to specify the | Os.
The memory specifier by default for inputis“in” and for output is“out”.
Obviously the number of channels chosen must match the capabilities of the sound board.

Syntax : startstream [SamplingFrequency]
Feature : Start streaming.
Params : SamplingFrequency specifies the sampling frequency to use.
If set to “0”, the sampling frequency known by the simulator (if available) will be reused.
Issues : Theinputsand outputs which will be used are:
o Either the one used previously with the 10 specification in the startstream command.
0 Or stereo streaming is performed with “in 0" and “in 1” asinputs
and “out 0" and “out 1” as outputs.

Warning: The reading of the stream inputs is made before the reading of the files, generators and tools; this
means that the stream inputs can be overwritten by the other inputsif careis not taken.

Examples:

startstream will start streaming with previous/default settings.

startstream O will start streaming with previous/default settings.

startstream 48000 will start streaming at 48kHz with previous/default 10 settings.
startstream 480002 0 data1 0in O will start streaming at 48kHz with “in 0" and “data 1” asinputs

and “out 0” and “in 0” as outputs.

As can be seen in this example, the “in” from “in 0” is omitted in the command as “in” is the default memory
specifier for the inputs (resp. “out” from “out 0” for the outputs).

It can also be seen that it is possible to have on the | eft channel the processed sound coming from “out 0" while
having on the right the unprocessed original signal coming from “in 0”.

+stopstream

Syntax : stopstream

Feature : Stops streaming started with the startstream command.

Params : none

Issues : The stopstream command cannot be used to stop a simulation started with the start command.
The stop command cannot be used to stop a simulation started with the startstream command.

+setstream

Syntax : setstream BlockSize NumberOfBlocks [InputDevicel D] [OutputDevicel D]
Feature : Sets streaming-specific parameters.
Params : BlockSze isthe obviously the size of blocks to use.
Number OfBlocks is the number of blocksto be used by the system for buffering.
When set to 0, the optimal number of blocksis used.
InputDevicel D specifies the device ID of the input deviceto be used.
OutputDevicel D specifiesthe device ID of the output device to be used.
Issues : The streaming functions use the default input and output devices by default.

Example: “setstream 128 0" will specify usage of optimal number of blocks of 128 default wave devices.

There’ s no special need for using this command, it is provided for those who wants to customize the way
streaming is done.

The InputDevicel D and OutputDevicel D can be used when multiple sound cards are present on the system and
when the “ non-default” one should be used.

10

5.6. Breakpoint related commands

+break
Syntax : +break [address]
Feature : Sets abreakpoint to break execution when reaching a given Program Counter value.
Params : addressisequal the PC (Program Counter) value where breakpoint should occur.
If omitted, current Program Counter will be used as address.
Issues : None.
Example: “ +break 128’ will set a breakpoint at a Program Counter of 128.

+tempbreak

Syntax : +Hempbreak HitNumber [address]

Feature : Setsatemporary breakpoint to break execution for a given number of hits.

Params : HitNumber isthe number of time the execution will stop before clearing the temporary breakpoint.
: addressis equal the PC value where breakpoint should occur. If omitted, current PC is used.

Issues : None.

Example: “ +tempbreak 10" will set atemporary breakpoint for 10 hits at current Program Counter.

-break

Syntax : -break [address]
Feature : Clears a breakpoint (breaking on Program Counter values).
Params : addressisequal to the PC value where breakpoint should not occur anymore.
If omitted, current PC is used.
Issues : None.
Example: “ -break 10" will reset breakpoint (temporary or not) at a Program Counter of 10.

+valbreak

Syntax : +valbreak value Reg/Mem_Id [address]

Feature : Setsabreakpoint to break execution when a given memory location reachs agiven value.
Params :valueisthe value (given as decimal value) on which the execution should stop.

Reg/Mem | d specifies the register or the memory bank to use and are defined in “ Show” command.

address is equal the location in the memory bank.
It isonly required when addressing memory i.e. thus not for registers.
If omitted, the first position of the memory bank will be used (in[0] if parameter is“in”).
Issues : None.
Example: “ +valbreak 120 data 100" will set a breakpoint which will stop execution when Data[100] = 120.

-valbreak

Syntax :-valbreak Reg/Mem_ld [address]
Feature : Clears a breakpoint (breaking on given values).

Params : Reg/Mem _Id specifiesthe register or the memory bank to use and are defined in “ Show” command.

address is equal the location in the memory bank.
It isonly required when addressing memory i.e. thus not for registers.
If omitted, the first position of the memory bank will be used (in[0] if parameter is“in”).
Issues : None.
Example: “ -valbreak data 100" will delete the above mentioned breakpoint.

-allbreak

Syntax : -allbreak

Feature : Clearsall breakpoints (breaking on instruction and on values).
Params : None.

Issues : None.

showbreak

Syntax : showbreak

Feature : Displaysinformation on all existing breakpoints (breaking on instructions and on values).
Params : None.

Issues : None.

1

5.7. Display related commands

show

This command can be used to display both registers and memory locations. The syntax of the command is a bit
different in the two cases as explained below

Showing of registers:
Syntax : show Register [DisplayFormat]
Feature : Displaysagiven register in agiven format.
Params : Register is specifying which register to show. It can be A, B or U.
: DisplayFormat specifies how to display the data. It can be:
- float :useof thefloating-point format.
- dS3.24 :dataisconsidered asbeing a S3.24 number shown in decimal.
- dS3.18 :dataisconsidered asbeing a S3.18 number shown in decimal.
- hS3.24 :dataisconsidered as being a S3.24 number shown in hexadecimal.
- hS3.18 :dataisconsidered asbeing a S3.18 number shown in hexadecimal.
- bS3.24 :dataisconsidered asbeing a S3.24 number shown in binary.
- bS3.18 :dataisconsidered as being a S3.18 number shown in binary.
- dec : datais a S3.24 number shown in decimal (mapped on dS3.24).
- hex : datais a S3.24 number shown in hexadecimal (mapped on hS3.24).
bin : datais a S3.24 number shown in binary (mapped on bS3.24).
Thefloat format is used as default i.e. when format is not specified.
Issues : Itisadvised to usetheinteger format to display flags astheir possible valuesare O or 1.

Showing of memory locations;
Syntax : show MemoryType [FirstAddress] [SecondAddress] [DisplayFormat]
Feature : Displays agiven range of memory in agiven format.
Params : MemoryTypeis specifying which memory pieceto use. It can be:
- In : for the DSP inputs (0x410 to 0x417 in read mode)
- Out : for the DSP outputs (0x410 to 0x417 in write mode)
- Data(or Mem) : forthe Data memory also called Sample Memory (0x000 to Ox3FF)
- Reg (or Scratch) : for the registers also called Direct Access Memory (0x400 to 0x40F)
Where addresses are given for the internal memory mapping as described in the 1K DSP
specification.
: FirstAddressisthefirst element to show. Thisvalueis 0-based.
It isgiven as an offset from the beginning of the piece of memory used.
Default valueis 0 when FirstAddress and SecondAddress are not specified.
: SecondAddressis the last element to show. Thisvalue is 0-based.
It isgiven as an offset from the beginning of the piece of memory used.
Default value isFirstAddress when SecondAddressis not specified.
: DlsplayFormat specifies how to display the data. It can be:
float : useof thefloating-point format.
- dS3.24 : dataisconsidered asbeing a S3.24 number shown in decimal.
- dS3.18 : dataisconsidered asbeing a S3.18 number shown in decimal.
- hS3.24 :dataisconsidered asbeing a S3.24 number shown in hexadecimal.
- hS3.18 :dataisconsidered as being a S3.18 number shown in hexadecimal.
- bS3.24 :dataisconsidered asbeing a S3.24 number shown in binary.
- bS3.18 :dataisconsidered asbeing a S3.18 number shown in binary.
- dec : datais a S3.24 number shown in decimal (mapped on dS3.24).
- hex : datais a S3.24 number shown in hexadecimal (mapped on hS3.24).
- bin : datais a S3.24 number shown in binary (mapped on bS3.24).
The float format is used as default i.e. when format is not specified.
The format can be specified regardless of the number of specified addresses.
Issues : A check is made on the addresses provided to the function fobidding commands like “ show in 16" .

setval

This command can be used to set a value of both registers and memory locations. The syntax of the command is
abit different in the two cases as explained below

Setting of registers:

Syntax
Feature

Params

I ssues

: setval Register Value

: Setsthe value of the given register.

: Register is specifying which register to show. It can be A, B, U, n (flag), v (flag) or z (flag).
: Value gives the value to use. The following format are supported:

- float : value written in floating-point format.

- hex: value written as a S3.24 hexadecimal number.

- octal : valuewrittenin octal format.

- bin: valueiswritten in binary form.

The format is recognized with the help of type specifiers such as 0x, $ or B and follow the
conventions used in the assembler.

. Itisadvised to use the integer format to display flags astheir possible valuesare O or 1.

Setting of memory locations:

Syntax
Feature :

Params

setval MemoryType Address Valuel ... VaueN
Sets a given range of memory location with given N values.

- MemoryType is specifying which memory piece to use. It can be:

- In: for the DSP inputs (0x410 to 0x417 in read mode)

- Out : for the DSP outputs (0x410 to 0x417 in write mode)

- Data(or Mem) : for the Data memory also called Sample Memory (0x000 to Ox3FF)

- Reg (or Scratch) : for the registers also called Direct Access Memory (0x400 to 0x40F)
Where addresses are given for the internal memory mapping as described in the 1K DSP
specification.

: Address isthe first element to set. Thisvalueis 0-based.

: Valuel isthe value to set in the first memory location (the one pointed by MemSpecifier:Address).

It isgiven as an offset from the beginning of the piece of memory used.

- ValueN isthelast value to set in the memory i.e. in (Address + N).

I ssues

dasm
Syntax
Feature
Params

. A check is made to prevent writing out of the boundaries.

The same formats as for the “register case” are supported.
These formats can be mixed from avalue to the other.

: dasm [BeginAddress] [EndAddress]
: Displays source code (or disassembled code) in the specified range.
: BeginAddressis the lower limit of the specified range for displaying.

: EndAddressis the upper limit of the specified range for displaying. If omitted, BeginAddressis used.

I ssues

+dasm
Syntax
Feature

Params
I ssues

-dasm

Syntax
Feature

Params
I ssues

- None.

: +dasm

: Turns on display of executed line when stepping through the code.
- None.

: See 6.Known problems, for more information.

:-dasm

: Turns off display of executed line when stepping through the code.
: None.

: See 6.Known problems, for more information.

13

+watch

Syntax : +watch [parameters] (see Show command)

Feature : Adds awatch on aregister or on memory locations.

Params : parameters are the parameters as defined in the Show command.
Issues : None.

The syntax is basically the same as the one used in the show command; the functionality is also not so different.
Indeed, the Show command shows the value of aregister or memory locations while the watch command will
“perform” the same task but it will happen when stepping and for every step.

-watch

Syntax : -watch Watchlndex

Feature : Removes the watch given by itsindex.

Params : Watchlndexis the index of the watch to remove; index is found from the “ showwatch” command.
Issues : Usethe “showwatch” command to find the index of the watch to remove.

-allwatch

Syntax :-allwatch

Feature : Removes all the watches.
Params : None.

Issues : None.

showwatch

Syntax :showwatch

Feature : Displaysall the watches created in the simulator.

Params : None.

Issues : Thiscommand associates index with watches; thisindex hasto be used with the “-watch” command.

14

5.8.

+alias

Syntax
Feature

Params

I ssues

-alias
Syntax
Feature

Params
I ssues

User parameter commands

: +dlias AliasName CommandName
:Addsan alias: AliasName of the given command CommandName.
: AliasNameis the name of the alias to use.

CommandNameis the name of the command to map on the alias.

: Alias are stored in the configuration file and thus remembered from one execution to the other.

: -aliasAliaslndex

: Removes the alias given by its index.

: Aliaslndexis theindex of the aliasto remove; index isfound from the “showalias” command.
: Use the “showalias” command to find the index of the alias to remove.

The command will have impact on the configuration file (alias removed from there aswell).

-allalias

Syntax :-alalias

Feature : Removes all the aliases.

Params : None.

Issues : The command will have impact on the configuration file (alias removed from there as well).
showalias

Syntax :showaliases

Feature : Displaysall the aliases created.

Params : None.

Issues : Thiscommand associates index with aliases; thisindex has to be used with the “-alias” command.

“setuser” command

Syntax
Feature
Params

: setuser UserParameterName UserParameterValue
: Setsagiven user parameter to agiven value.
: User Parameter Name specifies which user parameter will be set.

: UserParameter Valuegives avalue to the parameter.

I ssues

: The parameter value is dependent on the name of the parameter used.

These parameters are remembered from one use to the other. Thisis achieved by using some “ configuration”
mechanism i.e. registry on Windows platforms and configuration files on Linux.

The following user parameters can be set (with their respective allowed values):

- dasm

: specifiesif the disassembled line has to be displayed when stepping or not.
: value can be“on” or “off”; any other value is seen as an “ off” value.

- showformat : specifies which default format to use when using the “show” command.

: value can be one of the allowed DisplayFormat of the “show” command.

- truecycle : specifiesif the simulator should simulate all the 1024 cycles even though they are not “used”.

- resett

:value can be“on” or “off”; any other value is seen as an “of f” value.

ype : specifieswhat type of reset should be performed at the end of a simulation.
:valueisatype as given to the “reset” command (see 5.3.Program flow commands).
: thereset is only applied when the simulation endsitself i.e. not when “stop” is used.

- maxinputs : specifieswhat isthe maximum number of inputs the simulator should handle.

- maxo

- maxs

: valueis an integer number between 0 and 1024.

utputs : specifies what is the maximum number of outputs the simulator should handle.
: valueis an integer number between 0 and 1024.

gnals : specifieswhat isthe maximum number of signals the simulator should handle.
: valueis an integer number between 0 and 1024.

- maxtraces : specifieswhat isthe maximum number of traces the simulator should handle.

: valueis an integer number between 0 and 1024.

- maxtools : specifieswhat isthe maximum number of tools the simulator should handle.

: valueis an integer number between 0 and 1024.

15

5.9. “+input file” command

This command attaches afile to amemory location (or two for stereo files); amemory location can be either a

register or any piece of memory contained in the chip. A memory location is given by an identifier plusa

location:

- theidentifier can be chosen between the register and the memory ones of the “show” command. If not
specified, the“In” typeis used.

- thelocationis given when identifier is of memory type to know where to put the data.

The simulator supports the following file formats:

- .wav files: standard audio fileson PC. A header describes the sound characteristics.
- .pcmfiles: header-less raw audio files.

- .datfiles: floating-point ASCII files.

- .decfiles: decimal integer ASCII filesusing S3.24 valuesi.e. loss-less format.

- .hexfiles: hexadecimal integer ASCII files using s3.24 valuesi.e. loss-less format.

Syntax : +input file FileName SamplingFrequency LeftOrMonoL ocation [RightL ocation]
Params : FileName gives the name of thefileto use. The extension isused to know what isthefile type.
: SamplingFrequency gives the sampling frequency to use for header-less file formats.
If set to O, previously specified sampling frequency will be reused.
For .wav filesand due to its header, it can be always safely set to 0.
: LeftOrMonoL ocation (identifier and location) specifies where the |eft data should be put.
. RightL ocation specifies where the right data should be put if thefile is stereophonic.
Issues : The same sampling frequency should be used when specifying all inputs, outputs and tools.

For example, +input file input.wav 44100 0 3 sets:

- sampling frequency to 44.1 kHz.

- datawill be provided to the system at address $410 (position 0) for the left channel and at address $413
(position 3) for the right channel.

- Thefilewhich will be opened is named “ input.wav”. It will be checked that this file contains stereophonic
sound at 44.1kHz.

Or +input file test.wav 0 Data 100 Scratch 5 sets:

- Thefilewhich will be opened is named “test.wav” and is expected to be a stereophonic file. It will be
checked that this file contains stereophonic sound. The sampling frequency of thisfile will be used as
sampling frequency of the system if not already set to another value.

- datawill be provided to the system at address 100 of the data memory for the left channel and at address 5
of the scratch memory for the right channel.

5.10. “+output file” command

This command attaches afile to amemory location (or two for stereo files) ; amemory location can be either a

register or any piece of memory contained in the chip. A memory location is given by an identifier plusa

location:

- theidentifier can be chosen between the register and the memory ones of the “show” command. If not
specified, the“In” typeis used.

- thelocationis given when identifier is of memory type to know where to put the data.

The simulator supports the same formats as for “+input file” command.

Syntax : +output file FileName SamplingFrequency LeftOrMonoL ocation [RightL ocation]
Params : FileName gives the name of thefileto use. The extension is used to know what isthefile type.
: SamplingFrequency gives the sampling frequency to use for file formats with headers.
If set to O, previously specified sampling frequency will be reused.
: LeftOrMonoL ocation (identifier and location) specifies where the | eft data should be taken from.
: RightL ocation specifies where the right data should be taken from if the file is stereophonic.
Issues : The same sampling frequency should be used when specifying all inputs, outputs and tools.

For example, +output file out.pcm 0 5 sets:

- sampling frequency to the one already used by the system.

- datawill bewill be read from the system at 0x415 (position 5).

- Thefilewhich will be written is named “out.pcm”. It will be checked that the sampling frequency has
already been set in the system.

16

5.11. “+signal file” command

This command behaves exactly asthe “+input file” one from the syntax, parameters and issues point of view.
Theonly differencein this caseisthat the data are read before each instruction is executed.

5.12. “+trace file” command

This command behaves exactly as the “+output file” one from the syntax, parameters and issues point of view.
Theonly differencein this caseisthat the data are read before each instruction is executed.

5.13. “+input gen” command

This command attaches a generator to a memory location; a memory location can be either aregister or any

piece of memory contained in the chip. A memory location is given by an identifier plus alocation:

- theidentifier can be chosen between the register and the memory ones of the “show” command. If not
specified, the“In” typeisused.

- thelocationis given when identifier is of memory type to know where to put the data.

The simulator supports the following generator types:
- wnoise generate some white noise

- sin: generate asine wave

- tri: generate atriangle wave

- saw. generate a saw tooth wave

Syntax : +input file wnoise SamplingFrequency MonoL ocation Amplitude [Offset]
: +input file sin SamplingFrequency MonoL ocation Frequency Amplitude [Offset] [Phase]
: +input file tri SamplingFrequency MonoL ocation Frequency Amplitude [Offset]
: +input file saw SamplingFrequency MonoL ocation Frequency Amplitude [Offset]
Params : wnoise, sin, tri and saw specifies which generator to use
: SamplingFrequency gives the sampling frequency to use.
If set to O, previously specified sampling frequency will be reused.
- MonoL ocation (identifier and location) specifies where the generated data should be put.
: Amplitude specifies the peak amplitude of the noise to be generated.
: Offset specifies an offset (DC component) to be added to the generated noise.
: Frequency specifies the frequency (in Hz) of the sine, triangle or saw tooth wave to be generated
: Phase specifiesin radians the original phase when starting generating the sine wave.
Issues : The same sampling frequency should be used when specifying all inputs, outputs and tools.
: Possible formats for the amplitude and offset are as for the “ setval” command.

For example, +input gen sin 48000 mem 10 1000 0.25 0.25 3.14 sets:

- sampling frequency to 48 kHz.

- datawill be provided to the system at address 10 of the memory.

- Thesinewave will have afrequency of 1000Hz, an amplitude of 0.25 and a DC offset of 0.25. The sine
wave will have an original phase of PI.

Or +input gen wnoise 0 1 0.5 sets:

- Thesampling frequency will be the one already used in the system.

- Thegenerator will generate white noise at input 1 ($411 location) and will have an amplitude of 0.5.

5.14. *"+signal gen” command

This command behaves exactly asthe “+input gen” one from the syntax, parameters and issues point of view.
Theonly differencein this caseisthat the data are read before each instruction is executed.

17

5.15. “+tool AmpSweep” command

The AmplitudeSweep tool isintended to produce a sweeping signal in amplitude. The signal generated isasine
wave of a given frequency going from an initial level to afinal level by means of level increments.

Thetools tracks the output of the system, measures the output amplitude for a given input amplitude and
calculates the gain from input to output.

It isthus especially suited to measure the static transfer function of acompressor, distortion, ...

Syntax : +tool AmpSweep Sampling_Frequency Sine_Frequency Transient_Time Measurement_Time
Initial_Level Final_Level Level _Increment Input_Position Output_Position
Amplitude_Report_Filename Gain_Report_Filename

Params : Sampling_Frequency gives the sampling frequency (in Hz) to use.

If set to O, previously specified sampling frequency will be reused.
: Sne_Frequencyisthe frequency (in Hz) of the sine wave generated by the tool typically 1000 Hz.
: Transient_Timeis atime (in seconds) during which the system does not track the amplitude value.
It is meant to eliminate the transients due to the change in amplitude of the input sine wave.
: Measurement_Timeis the time (in seconds) during which the system tracks the amplitude value.
This phase takes place after Transient_Time has el apsed.
:Initial_Level istheinitial amplitude (in dB) of the sine wave.
: Final_Level isthefinal amplitude (in dB) of the sine wave.
Once this amplitude will be reached, simulation will stop.
:Level_Incrementistheincrement (in dB) by which the amplitude isincreased every phase.
A phaseisin that case acomplete " Transient_Time+ Measurement_Time" simulation.
: Input_Position is the position in which the tool should writeitsinput (same as for +input file).
: Output_Position isthe position in which the tool should read the output of the system.
: Amplitude_Report_Filenameis the name of the report file containing the amplitude information.
Thefirst column of thisfileisthe input amplitude (in dB)
The second column of thisfile isthe output amplitude (in dB).
: Gain_Report_Filenameis the name of the report file containing the gain information.
Thefirst column of thisfileisthe input amplitude (in dB)
The second column of thisfileisthe gain (in dB) between input and output.
Issues: The same sampling frequency should be used when specifying all inputs, outputs and tools.

For example, +tool AmpSweep 48000 1000 0.020 0.500 -90 0 5 0 0 amplitude.txt gain.txt sets:
sampling frequency to 48 kHz, sine frequency to 1 kHz.

- transient time to 20 ms and measurement time to 500 ms.

- amplitude will go from -90 dB to O dB by steps of 5 dB.

- datawill be provided to the system at adress 0x410 (position 0) and will be read from the system at 0x410
(position 0) aswell.

- amplitude report will be written in the "amplitude.txt" file while gain report will be written in the "gain.txt"
file.

The fact that data can be read/written from register or memory can be used to perform measurements on a part of
a complete application only (i.e. when real | Os locations cannot be used).

18

5.16. “+tool FregResp” command

The FrequencyResponse tool isintended to produce awhite noise signal. The signal generated is expected to
cover the full frequency range and that during a certain amount of time: the number of blocks. Asthetool uses
FFTsinternally, ablock size hasto be specified corresponding to the size of the FFT. A given number of blocks
will be generated first so that the system under test can reach the steady state.

Thetool tracks the output of the system and measures the transfer function (amplitude and phase) of the system.
It isthus especially suited to measure the frequency response of filters, ...

Syntax : +tool FregResp Sampling_Frequency BlockSize NSkipBlocks Noisel evel
Input_Position Output_Position Amplitude_Report_Filename Phase Report_Filename
Params : Sampling_Frequency gives the sampling frequency (in Hz) to use.
If set to O, previously specified sampling frequency will be reused.
: BlockSizeis the size (power of 2 expected) on which the FFT will be computed.
This BlockSize also gives the number of output points which is equal to BlockSize/ 2.
- NSkipBlocks is the number of blocks that should be processed before actually measuring.
It is meant to eliminate the transients in the system and allow it to run in steady state.
: NoiseLevel isthelevel (indB) of the generated noise.
This parameter can help showing some limit cycles when set to a small value.
: Input_Position isthe position in which the tool should writeitsinput (same as for +input file).
: Output_Position isthe position in which the tool should read the output of the system.
- Amplitude_Report_Filenameis the name of the report file containing the amplitude information.
Thefirst column of thisfileisthe frequency (in Hz)
The second column of thisfile isthe amplitude (in dB) between input and output.
: Phase_Report_Filenameis the name of the report file containing the phase information.
Thefirst column of thisfileisthe frequency (in Hz)
The second column of thisfile isthe phase (inrad) between input and output.
Issues : The same sampling frequency should be used when specifying all inputs, outputs and tools.

For example, +tool FreqResp 48000 16384 5 -10 0 0 amplitude.txt phase.txt sets:

- sampling frequency to 48 kHz.

- FFT size of 16384 (thus output of 8192 points), 5 blocks “skipped” before measuring.

- Average amplitude of the noise input set to —10 dB.

- datawill be provided to the system at address 0x410 (position 0) and will be read from the system at 0x410
(position 0) aswell.

- amplitude report will be written in the "amplitude.txt" file while phase report will be written in the
"phase.txt" file.

The fact that data can be read/written from register or memory can be used to perform measurements on a part of
a complete application only (i.e. when real | Oslocations cannot be used).

WARNING: thistool isin a“betarelease” state which means that bugs might still be found in the tool.
Moreover, dueto still unknown reasons, the output generated is quite “noisy” (contains peaks) even though
sufficient timeis spent to let the system go in steady state but also even though proper windowing is done. This
problem is under investigation and a solution is expected (or should it be said ‘hoped’) in the near future.

19

6. Known problems, bugs and limitations

6.1. Multi-threading related issues

Since the simulation isrunning in adifferent thread than the command processing, it is possible to enter new
commands while asimulation is running (except commands like start and step). It allows user to show values, set
breakpoints, ... and especially to stop this simulation.

1) If thedisplay of disassembled lines has been turned on and if the simulation running has been launched with
astep command and a pretty big number of steps, the screen will be continuously filled with disassembled
lines. Please, note that even though the display will not reflect it (due to scrolling), commands can still be
entered; in this case, the most interesting one being the stop command.

2) Duetothefact that it ispretty difficult to synchronize the different threads when it comes to write on the
screen (and on the only console window available in the command-line version), the program sometimes
displaystwice the prompti.e. “1KSM>".

3) When starting a simulation with the start command, the simulator will display the “ Simulation running”
message. From that moment on, the simulation will run and when it will be finished (because end of fileis
reached or tool has finished its work), the “ Simulation complete” message will be displayed.

4) Sincethe“go”-like commands are not blocking, the “exit” command should not be used in scripts. Thiswill
be solved in the future by implementing prioritized command queues and blocking “go” -like commands.

6.2. IO related issues

When coming to the | O topic, the simulator doesn’t check if an input has already been attached to an input
device (being afile, agenerator or atool). Thisimpliesthat the user has to take care that an input is not
overwritten by another input.

The same situation exists for the outputs but in that case, it can be used as an interesting feature. For example, a
tool like AmpSweep can generate asignal on agiven input and takes its result from a given output; it is thus
possible to write to an output file the same output as the one tracked by the tool to see what’ s happening.

The reading/writing of .wav and .pcm files are limited tol16-bits files only. As a matter of fact and for the sake of
simplicity, it has been considered that using a 24-bits DSP with an 8-bits input wouldn’t make so much sense
thus restricting the simulator to 16-bitsfiles.

